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a b s t r a c t

The Mississippi Alluvial Valley is a floodplain along the southern extent of the Mississippi River ex-
tending from southern Missouri to the Gulf of Mexico. This area once encompassed nearly 10 million ha
of floodplain forests, most of which has been converted to agriculture over the past two centuries.
Conservation programs in this region revolve around protection of existing forest and reforestation of
converted lands. Therefore, an accurate and up to date classification of forest cover is essential for
conservation planning, including efforts that prioritize areas for conservation activities. We used object-
based image analysis with Random Forest classification to quickly and accurately classify forest cover. We
used Landsat band, band ratio, and band index statistics to identify and define similar objects as our
training sets instead of selecting individual training points. This provided a single rule-set that was used
to classify each of the 11 Landsat 5 Thematic Mapper scenes that encompassed the Mississippi Alluvial
Valley. We classified 3,307,910785,344 ha (32% of this region) as forest. Our overall classification ac-
curacy was 96.9% with Kappa statistic of 0.96. Because this method of forest classification is rapid and
accurate, assessment of forest cover can be regularly updated and progress toward forest habitat goals
identified in conservation plans can be periodically evaluated.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Before European settlement, approximately 9.7 million ha
within the Mississippi Alluvial Valley were forested (King et al.,
2006). By the 1930s the area of bottomland forest in this region
had declined to about 4.2 million ha and suffered an additional
45% decline through the 1980s (Oswalt, 2013). Since then, con-
servation partners in the Mississippi Alluvial Valley have im-
plemented strategic habitat conservation for wildlife via a land-
scape-scale approach to forest conservation and restoration (U.S.
Fish and Wildlife Service, 2008). This approach relies upon: (1) the
development of species-habitat models to define sustainable
landscapes; (2) implementation of conservation actions in ac-
cordance with these landscape-designs; and (3) the ability to
monitor and evaluate progress towards meeting conservation
objectives. Specifically, the Lower Mississippi Valley Joint Venture
partnership exists for the purpose of facilitating landscape-scale
conservation and restoration of bottomland hardwood forest
ecosystems with an emphasis on supporting healthy populations
of avian species and other forest dependent wildlife species in this
region (Twedt et al., 1999; LMVJV Operational Plan, 2013). There-
fore, the ability to characterize the forest landscape (e.g., amount
and spatial arrangement) is necessary to facilitate planning and
evaluation of conservation goals.

To characterize the forest landscape of the Mississippi Alluvial
Valley, conservation partners have historically used: (1) traditional
analytical methods using 30 m resolution Landsat TM imagery and
aerial photography in a supervised classification (Twedt and
Loesch, 1999); (2) data from the U.S. Forest Service's Forest In-
ventory and Analysis Program (Bechtold and Patterson, 2005) in
conjunction with aerial or satellite photography (Rudis and Bird-
sey, 1986; Oswalt, 2013); and (3) publicly available National Land
Cover Data (NLCD; Fry et al. 2011).

Although these approaches provided useful and accurate esti-
mates of forest area and distribution, advances in remote sensing
software and analysis now permit classification of remotely sensed
imagery that is more economical, efficient, and has improved ac-
curacy compared to previously used pixel-based classification
methods. For example, relatively inexpensive medium and high-
resolution imagery is available that allows analysis at improved
spatial and temporal scales. Geographic Information System (GIS)
software has incorporated object-based image analyses as an al-
ternative to pixel-based methods. Additionally, decision tree

www.sciencedirect.com/science/journal/23529385
www.elsevier.com/locate/rsase
http://dx.doi.org/10.1016/j.rsase.2016.01.003
http://dx.doi.org/10.1016/j.rsase.2016.01.003
http://dx.doi.org/10.1016/j.rsase.2016.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rsase.2016.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rsase.2016.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rsase.2016.01.003&domain=pdf
http://dx.doi.org/10.1016/j.rsase.2016.01.003


M. Mitchell et al. / Remote Sensing Applications: Society and Environment 4 (2016) 55–6056
creation in software supports analysis and classification of land-
scapes with improved repeatability (Friedl and Brodley, 1997; Pal
and Mather, 2003; Immitzer et al., 2012; Mellor et al., 2013). This
combination of object-based image analysis and decision tree
classification has the potential to facilitate and enhance landscape-
scale conservation efforts through use of more effective, trans-
parent, and repeatable analytical processes.

Object-based image analysis allows for segmentation, attribu-
tion, classification, and establishment of relationships among de-
fined objects that are not possible in pixel-based analyses (Cufi
et al., 2002). This image analysis method takes digital input (e.g.,
Landsat 5 Thematic Mapper [TM] imagery) in the form of spectral
bands, as well as spectral indices created from these bands, and
creates multiple sets of similar pixels (i.e., objects) that may be
more meaningful and easier to analyze than individual pixels
(Blaschke and Strobl, 2001). Each identified object assumes the
attributes of all the pixels that comprise it, as well as contextual
Fig. 1. Boundaries of the Mississippi Alluvial Valley and Landsat 5 Themat
information such as its relationship to surrounding objects.
When used in conjunction with classification and regression

tree (CART) methods, object-based image analysis allows for the
creation of dynamic decision tree rule-sets that can be applied to
separate datasets (Breiman et al., 1984). This method uses training
objects to predict the class of other objects. As a binary classifi-
cation tree, a test and output decision is applied at each node
within CART analysis until reaching a final prediction. The Random
Forest algorithm is analogous with CART methodology but builds
multiple decision trees and compares the outcome of all these
trees to make a decision. Even so, Random Forest is fast, accurate,
and is capable of forming as many trees as the user specifies
without over fitting the data being analyzed (Breiman and Cutler,
2005). In many cases, Random Forest classification produces
higher accuracies than other classification approaches and has
been successfully used to separate imagery classes that are spec-
trally similar (Akar and Güngör 2012).
ic Mapper (TM) scenes (path-rows) as well as the final classification.
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Our objective was to develop a forest classification process,
using object-based image analysis and Random Forest algorithms,
which provides conservation partners an effective, accurate, and
repeatable method to evaluate the areal extent and spatial dis-
tribution of forested habitat within the Mississippi Alluvial Valley.
2. Methods

2.1. Study area

The 10 million ha Mississippi Alluvial Valley is the floodplain ad-
jacent to the Mississippi River from southern Illinois to southern
Louisiana. We used boundaries defined as Bird Conservation Region 26
by the North American Bird Conservation Initiative (http://www.nab
ci-us.org/bcrs.htm), but refined it to better delineate the transition
from alluvial floodplain and delta land to upland habitats ( Fig. 1;
http://www.arcgis.com/home/item.html?
id¼c72185797b564b5995f44e9bc367163e).

The Mississippi Alluvial Valley has experienced extensive de-
forestation over the past two centuries as a result of conversion to
agriculture and, to a lesser extent, urbanization. Thus only about a
quarter of the region remains forested and has been highly frag-
mented (Twedt and Loesch, 1999; Gardiner and Oliver, 2005; Os-
walt, 2013). Extant forests are on more flood-prone soils with
forest types predominated by sweetgum-Nuttall oak-willow oak,
sugarberry-hackberry-elm-green ash, overcup oak-water hickory,
and baldcypress-water tupelo (Oswalt, 2013).

2.2. Data and band normalization

We obtained 11 Landsat 5 TM scenes (http://earthexplorer.usgs.
gov) from October or November 2011 that had o10% cloud cover.
Images were selected to capture the landscape after most crops
have been harvested yet trees still had leaves. These images were
Fig. 2. Flowchart showing the classification process. Start at ‘Calculate ratios’ and follow
arrows. Again, upon reaching ‘Output’, follow blue arrows through completion. (For inter
web version of this article.)
normalized to account for differences in sun illumination, geo-
metry, and atmospheric effects following procedures outlined by
Chander et al. (2009) and Thenkabail (2009). These normalized
images were clipped in ArcGIS 10.1 (Environmental Systems Re-
search Institute [ESRI], Redlands, CA) with the Worldwide Re-
ference System - Landsat descending shapefile (http://landsat.gsfc.
nasa.gov) to remove corrupt edges of imagery where all Landsat
sensors did not overlap.

2.3. Calculate band ratios and transformations

We calculated spectral band ratios (TM2/TM3, TM7/TM2, TM3/
TM4, TM3/TM5, TM4/TM3, TM4/TM5, TM5/TM7) and band trans-
formations (Land Water Mask [LWM], Normalized Difference Ve-
getation Index [NDVI], Green Normalized Difference Vegetation
Index [GNDVI], Specific Leaf Area Vegetation Index [SLAVI], Nor-
malized Difference Water Index [NDWI], and Tasseled Cap:
Brightness, Greenness, and Wetness) from Landsat 5 TM imagery
(Fig. 2).

Band ratios (i.e., band division) when applied to multi-spectral
imagery tends to negate environmental effects on spectral values,
as well as enhances differences in reflectance of certain materials
(Richards and Xiuping, 2006). Band transformations, such as Tas-
seled Cap, were used to highlight particular features (e.g., vege-
tation health, vegetation moisture, or soil.

moisture) and properties by combining multiple spectral bands
(Crist and Kauth, 1986).

2.4. Segment, train, and classify imagery

Developed areas were identified and delineated, before con-
ducting object-based image analysis, using a morphological open
tool (ERDAS Imagine 2014 Version 2013; Hexagon Geospatial,
Norcross, GA) with a 5�5 pixel windows on 2006 National Land
Cover Data (NLCD; “developed” classes 21, 22, 23, and 24) to
the black arrows. Upon reaching ‘Output’, continue through step 2 by following red
pretation of the references to color in this figure legend, the reader is referred to the
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Fig. 3. Two-step segmentation process in which (a) all objects are initially segmented, and (b) dissolved based on spectral difference.
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include large developed areas (cities) while omitting small de-
veloped areas and thin linear features (e.g., roads). These devel-
oped areas were masked and were not included in the initial
training and classification of TM imagery. We supplemented the
resultant developed areas by manually delineating any developed
areas observed on 2013 high resolution imagery (ESRI World
Imagery) that were not classified as developed on 2006 NLCD.

The initial step (multi resolution segmentation) of a two step
segmentation process used a bottom-up, pairwise regional mer-
ging technique in eCognition to segment undeveloped areas into
objects. This approach extracted features that were characterized
not only by their spectral signatures but also by their shape. The
resultant output effectively delineated agricultural fields and for-
est patches but each field or forest patch consisted of many small
objects. Therefore, a second segmentation process, also using
eCognition, was used to merge these small objects based on their
spectral similarities, into contiguous and identifiable features
(Fig. 3).

We classified land and water training sets used in object-based
image analysis from normalized TM spectral bands, TM band ra-
tios, and TM band transformations. To classify our training water
dataset we selected all objects that had Land Water Mask and
near-infrared mean band values within the lower 1% of their re-
spective indices values across the entire scene. As objects re-
presenting open water were relatively homogenous within these
spectral index bands, this lowest percentile index value adequately
characterized open water. Conversely, to adequately characterize
the land data training set we selected all objects that had mean
Land Water Mask values in the upper 60% of scene values and
mean NDVI in the upper 20% of scene values.

Each scene was manually inspected to verify that training ob-
jects were accurately representing their respective class. Training
objects that represented an incorrect class were removed from the
training set. On inspection, training objects were manually added
based on the analyst's interpretation of the need for additional
objects within the training set. For example, the boundaries of
open water (typically marsh) were not classified in either training
set and therefore representative objects within these areas were
manually added to either the land or water training dataset.
Training objects were used as input into the Random Forest clas-
sifier to classify all non-training objects. This resulted in a binary
classification (land or water) for all non-developed areas within
each Landsat TM scene.
2.5. Segment and classify imagery (forest vs. non-forest)

The objects classified as land were again segmented to separate
and classify them as either forest or non-forest using the same
procedures we used to classify land and water. Thus, for areas
classified as land, all spectral band, band ratio, and band indices
object data were used to train the Random Forest classifier. Mean
values for SLAVI, TM7/TM2, Near Infrared, and Tasseled cap
brightness were used to separate the classes and create training
objects. Upon completion of the classification (forest, non-forest,
and water) we used all classified objects as a training dataset to
inform the Random Forest classifier to classify developed areas
which were heretofore masked from classification.

Because recently planted and regenerating forests have spectral
characteristics similar to grasslands or agricultural lands, we in-
corporated spatially explicit data obtained from local, state, and
federal agencies that depicted areas of forest restoration. These
data included lands enrolled in the U.S. Department of Agricul-
ture's Wetland Reserve Program (WRP) and Conservation Reserve
Program (CRP). All of these areas were classified as forest, re-
gardless of the designation assigned through our classification
process.
2.6. Accuracy assessment

Classified output images were merged and accuracy of forest,
non-forested, and water classification was assessed within the
boundaries of the Mississippi Alluvial Valley using ERDAS Imagine
(Version 2013; Hexagon Geospatial, Norcross, GA). We evaluated
500 random points (160 forest, 240 non-forest land, and 100 wa-
ter) by visually comparing classified value with habitat observed
on Google Earth imagery (Google Earth 7.1, October 2013). Accu-
racy assessments produced an error matrix from which we cal-
culated overall accuracy, producer's accuracy (the probability that
a land-cover of an area is classified as such: errors of omission),
user's accuracy (the probability that the classification actually
matches the true land-cover type: errors of commission) and Co-
hen's Kappa statistic. The proportion of forest area was adjusted
for accuracies in classification following recommendation of
Olofsson et al. (2013).



Table 1
Classification (rows) and habitat observed on Google Earth imagery (Google Earth
7.1, October 2013; columns) for 500 random points distributed among objects
classified as forest (160 points), non-forest land (240 points) and water (100
points).

Forest Land Water Classified Classified area (ha)

Forest 157 3 0 160 3,141,847
Land 8 231 1 240 6,749,188
Water 0 1 99 100 397,370
Observed 165 235 100 500 10,288,405
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3. Results

Our overall classification accuracy was 96.9% (Table 1). The
accuracy assessments for forest, non-forest land, and water were
similar with respective user's accuracies of 98.1%, 96.3%, and 99.0%.
Respective producer's accuracies were 93.2%, 99.0%, and 93.3% and
Kappa statistics were 0.97, 0.93, and 0.99. After adjusting the area
classified as forest to account for classification error, our results
indicated 3,307,910785,344 ha ( ¯±x SE) within the Mississippi Al-
luvial Valley as forest, which included forest within developed
areas (Fig. 1). The reforestation dataset that was incorporated into
the forest classification totaled 551,307 ha, of which 159,322 ha
would have otherwise been designated as non-forest within our
classification.
4. Discussion

We found object-based image analysis combined with Random
Forest classification was an effective method of classifying forest
across a large landscape and was accurate based on comparison to
known imagery. This methodology provides conservation planners
and land managers an effective tool to evaluate conservation ef-
forts. Furthermore, utilizing decision trees provide a transparent,
repeatable and easily interpreted process to facilitate regular up-
dates and assessments of forest area and their spatial distribution.

Under the auspices of programs such as CRP, WRP, and other
conservation programs, there has been extensive, successful forest
restoration throughout the Mississippi Alluvial Valley (Stanturf
et al., 2000; King et al., 2006). In our classification, we attempted
to capture reforestation without introducing errors of commission
by including agriculture that was spectrally similar to reforesta-
tion. Even so, we found it difficult to separate newly reforested
land from agricultural land. Forest restoration sites may take 45
years before they can be spectrally distinguished from agriculture
and another 10 years before they can be separated from scrub-
shrub habitats when visualizing these areas using moderate re-
solution imagery. Therefore, to ensure young forest habitats are
classified as forest, we recommend continued reliance on spatially
defined reforestation databases that are incorporated as forest
post-classification.

Using object-based image analysis and a Random Forest clas-
sification allowed us to classify multiple Landsat scenes with no
modification to the rule-set; however, refinement of our rule-set
may improve future iterations of our analyses and allow for na-
tional scalability. The rule-set we created utilizes only a few tools
and data types, but through further testing and implementation
this process may become increasingly automated and accurate.
Our rule-set could also be expanded to incorporate other data
(LiDAR, elevation, hydrology) to enhance classification results and
further increase accuracy but this would come at the expense of
greater processing time. Since we are working with such a large
area and were only interested in three classes (forest, non-forest
and water) we were successful using imagery from one point in
time (October-November 2011).

More complicated forest classifications, such as forest type,
likely would require multi-temporal data to incorporate greater
spectral variability within each class. Even so, the object-based
forest classification methods could be used for this more complex
classification. Adding additional data will increase calculation time
and, depending on desired classification, may not significantly
increase classification accuracy.

Although including data used in training a classifier within an
accuracy assessment may bias estimated accuracy, we chose to run
the assessment on the entire classification because our training
dataset was not defined from known sample points. Rather our
training set consisted of more broadly defined objects that were
created through our rule-set.

Regular assessment of land cover and habitat types provide
conservation partners the ability to understand the effects of
conservation actions. Within the Mississippi Alluvial Valley, period
assessment of bottomland forest cover is essential for evaluated
progress towards habitat conservation goals. Thus, accurate clas-
sification of forest cover is required for conservation planning,
including efforts that prioritize areas for reforestation to increase
forest cover area. Using our object-based forest classification
methodology, conservation partners will be able to quickly classify
forest on the landscape allowing for the ability to track gains and
losses in forest cover over time and at more timely intervals than
the 5–10 year assessments currently available via National Land
Cover classifications.
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